I NDI AN MARITI ME UNI VERSI TY

(A Central University, Govt. of India)
End Semester Examinations- Dec 2019/J an 2020
B.Tech (Marine Engineering)

Semester-I
UG11T1104/ 2104 - Basic Electrical and Electronics Engineering

Date: 17.12.2019 Maximum Marks: 70

Time: 3 Hrs
Pass Marks: 35
(PART- A)
(Question number 1 is compulsory) ($10 \times 2=20$ Marks)
1.
(a) State and Explain Kirchhoff's voltage law.
(b) Find the average value and rms value of a voltage source $\mathrm{v}=350$ $\sin 100 \mathrm{nt}$.
(c) An R-L-C series circuit consists of a resistance of 1000Ω, an inductance of 100 mH and a capacitance of $10 \mu \mu \mathrm{~F}$. If a voltage of 100 V is applied across the combination, find the resonance frequency and Q-factor of the circuit.
(d) What do you understand by B-H curve characteristics?
(e) What is damping torque in analog instruments?
(f) State the balance condition in Maxwell's inductance-inductance AC Bridge?
(g) Selection of type of the wiring in electrical installation depends on which factors?
(h) Define ripple factor.
(i) Define α and β of a transistor?
(j) What is series regulator? Draw circuit diagram of series regulator.

PART-B

Answer any five of the following seven questions
($5 \times 10=50$ Marks)
2.a) Using node voltage method, find current in 3Ω resistance for the network given below.
(5 marks)

2.b) Use Thevenin's theorem to calculate current flowing through 4Ω resistor.
(5marks)

3.a) Derive an expression of transients of current in R-L series circuit when DC voltage V is suddenly applied to the circuit.
(5 marks)
3.b) Explain working of lead acid battery.
(5 marks)
4.a) A voltage $e(t)=100 \sin 314 t$ is applied to a series circuit consisting of 10Ω resistance, 0.0318 H inductance and a capacitance of $63.6 \mu \mathrm{~F}$, calculate

1. Expression for current i ,
2. Phase angle between voltage \& current
3. Power factor
4. Active power consumed.
(5 marks)
4.b) Derive the relationship between phase voltage and line voltage in a star connected three phase system with the help of phasor diagram and a circuit diagram.
(5 marks)
5.a) A rectangular iron core is shown below has a mean length of magnetic path of 100 cm , cross-section of ($2 \mathrm{~cm} \times 2 \mathrm{~cm}$), relative permeability of 1400 and an air gap of 5 mm cut in the core. The three coils carried by the core have number of turns $N_{a}=335, N_{b}=600$ and $N_{c}=600$ and the respective currents are 1.6 A, 4 A and 3 A . The directions of the currents are as shown. Find the flux in the air-gap.

5.b) Derive the expression for inductances connected in series and inductances connected in parallel.
(5 marks)
6.a) With a neat sketch explain the working of a PMMC type ammeter. Can this instrument be used for measuring alternating current? J ustify your answer (5 marks)
6.b) A galvanometer resistance 100Ω has 100 divisions. When a potential difference of 20 mV is applied to its terminal, it is deflected by 10 divisions. How can it be converted into a voltmeter to read 100 volts?
(5 marks)
7.a) Explain the forward and reverse characteristics of a diode. (5 marks)
7.b) A half-wave rectifier using silicon diode has a secondary emf of 14.14 V (rms) with a resistance of 0.2Ω. The diode has a forward resistance of 0.05Ω and a threshold voltage of 0.7 V . If load resistance is 10Ω, determine,
i. Dc load current
ii. Dc load voltage
iii. Voltage regulation
iv. Efficiency
(5 marks)
8.a) What is a transistor? Explain input and output characteristics of a NPN transistor in a common base configuration.
(5 marks)
8.b) How will you use transistor as a switch?
(5 marks)
